College Algebra (11th Edition)

Published by Pearson
ISBN 10: 0321671791
ISBN 13: 978-0-32167-179-0

Chapter R - Section R.4 - Factoring Polynomials - R.4 Exercises - Page 39: 74

Answer

The factored form of the given expression is $\displaystyle ( x+1)( x-1)\left( x^{4} +x^{2} +1\right)$

Work Step by Step

$\displaystyle \begin{array}{|l|l|} \hline =x^{6} -1^{6} & \begin{array}{{>{\displaystyle}l}} \mathrm{We\ can\ re-write} \ 1\ \mathrm{as}\\ 1^{6} \ \mathrm{since} \ 1^{a} =1\\ \mathrm{a\ is\ any\ integer\ greater\ than\ 0} \end{array}\\ & \\ \hline =\left( x^{2}\right)^{3} -\left( 1^{2}\right)^{3} & \mathrm{Apply\ the\ rule} \ a^{n\cdot m} =\left( a^{n}\right)^{m}\\ & \\ \hline =\left( x^{2} -1\right)\left( x^{4} +x^{2} +1\right) & \begin{array}{{>{\displaystyle}l}} \mathrm{Apply\ the\ difference\ of\ cubes\ here}\\ a^{3} -b^{3} =( a-b)\left( a^{2} +ab+b^{2}\right) \end{array}\\ & \\ \hline =( x+1)( x-1)\left( x^{4} +x^{2} +1\right) & \begin{array}{{>{\displaystyle}l}} \mathrm{Apply\ the\ difference\ of\ squares\ here} :\\ a^{2} -b^{2} =( a+b)( a-b) \end{array}\\ \hline \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.