College Algebra (11th Edition)

Published by Pearson
ISBN 10: 0321671791
ISBN 13: 978-0-32167-179-0

Chapter R - Section R.4 - Factoring Polynomials - R.4 Exercises - Page 39: 73

Answer

$\text{The factored form of the given expression is}:$ $\left[( x+1)\left( x^{2} -x+1\right)\right]\left[( x-1)\left( x^{2} +x+1\right)\right]$

Work Step by Step

$\displaystyle \begin{array}{|l|l|} \hline =x^{6} -1^{6} & \begin{array}{{>{\displaystyle}l}} \mathrm{We\ can\ re-write} \ 1\ \mathrm{as}\\ 1^{6} \ \mathrm{since} \ 1^{a} =1\\ \mathrm{a\ is\ any\ integer\ greater\ than\ 0} \end{array}\\ & \\ \hline =\left( x^{3}\right)^{2} -\left( 1^{3}\right)^{2} & \mathrm{Apply\ the\ rule} \ a^{n\cdot m} =\left( a^{n}\right)^{m}\\ & \\ \hline =\left( x^{3} +1\right)\left( x^{3} -1\right) & \begin{array}{{>{\displaystyle}l}} \mathrm{We\ can\ apply\ the\ difference\ of}\\ \mathrm{squares\ here} :\ \\ a^{2} -b^{2} =( a+b)( a-b)\\ \mathrm{In\ this\ case} ,\ a\ =\ x^{3} \ \mathrm{and} \ \\ b\ =\ 1 \end{array}\\ & \\ \hline =\left[( x+1)\left( x^{2} -x+1\right)\right]\left( x^{3} -1\right) & \begin{array}{{>{\displaystyle}l}} \mathrm{Apply\ the\ sum\ of\ cubes\ here} :\\ a^{3} +b^{3} =( a+b)\left( a^{2} -ab+b^{3}\right) \end{array}\\ =\left[( x+1)\left( x^{2} -x+1\right)\right]\left[( x-1)\left( x^{2} +x+1\right)\right] & \begin{array}{{>{\displaystyle}l}} \mathrm{Apply\ the\ difference\ of\ cubes\ here}\\ a^{3} -b^{3} =( a-b)\left( a^{2} +ab+b^{2}\right) \end{array}\\ \hline \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.