College Algebra (11th Edition)

Published by Pearson
ISBN 10: 0321671791
ISBN 13: 978-0-32167-179-0

Chapter R - Section R.5 - Rational Expressions - R.5 Exercises - Page 48: 57

Answer

$ \dfrac{4x-7}{x^{2} -x+1}$

Work Step by Step

Factor $x^3+1$ using the sum of two cubes formula: $\displaystyle \begin{array}{ l l } =\dfrac{4}{x+1} +\dfrac{1}{x^{2} -x+1} -\dfrac{12}{( x+1)\left( x^{2} -x+1\right)} & \begin{array}{{>{\displaystyle}l}} \end{array}\\ \end{array}\\$ Make the expressions similar using their LCD which is $(x+1)(x^2-x+1)$. $=\dfrac{4}{x+1} \cdot \dfrac{x^{2} -x+1}{x^{2} -x+1} +\dfrac{1}{x^{2} -x+1} \cdot \dfrac{x+1}{x+1} -\dfrac{12}{( x+1)\left( x^{2} -x+1\right)}$ $\\ =\dfrac{4\left( x^{2} -x+1\right)}{(x+1)\left( x^{2} -x+1\right)} +\dfrac{1( x+1)}{(x^{2} -x+1)( x+1)} -\dfrac{12}{( x+1)\left( x^{2} -x+1\right)}$ Apply the Distributive Property; $=\dfrac{4x^{2} -4x+4}{( x+1)\left( x^{2} -x+1\right)} +\dfrac{x+1}{( x+1)\left( x^{2} -x+1\right)} -\dfrac{12}{( x+1)\left( x^{2} -x+1\right)}$ Combine like terms $=\dfrac{4x^{2} -4x+4\ +\ ( x+1) \ -\ 12}{( x+1)\left( x^{2} -x+1\right)}\\$ $=\dfrac{4x^{2} +( -4x+x) +( 4\ +\ 1-12)}{( x+1)\left( x^{2} -x+1\right)} $ $=\dfrac{4x^{2} -3x-7}{( x+1)\left( x^{2} -x+1\right)} $ Factor the numerator: $=\dfrac{( 4x-7)( x+1)}{( x+1)\left( x^{2} -x+1\right)} $ Cancel the common factors: $\require{cancel} =\dfrac{( 4x-7)\cancel{( x+1)}}{\cancel{( x+1)}\left( x^{2} -x+1\right)} $ $=\dfrac{4x-7}{x^2-x+1}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.