College Algebra (11th Edition)

Published by Pearson
ISBN 10: 0321671791
ISBN 13: 978-0-32167-179-0

Chapter R - Section R.5 - Rational Expressions - R.5 Exercises - Page 48: 76

Answer

$\text{The simplified form of the given complex fraction is }\dfrac{2}{x(x+h)}$.

Work Step by Step

$\begin{array}{ l l } =\dfrac{\dfrac{-2}{x+h} -\left( -\dfrac{2}{x}\right)}{h} & \begin{array}{l} \mathrm{Apply\ the\ rule\ }\\ \dfrac{-a}{b} =-\dfrac{a}{b} \end{array}\\ & \\ =\dfrac{\dfrac{-2}{x+h} +\dfrac{2}{x}}{h} & \mathrm{Apply\ the\ rule} \ a-( -b) =a+b.\\ & \\ =\dfrac{\left(\dfrac{-2}{x+h} +\dfrac{2}{x}\right) \cdot x( x+h)}{h\cdot x( x+h)} & \begin{array}{l} \mathrm{Multiply\ the\ numerator\ }\\ \mathrm{and\ denominator\ of\ the\ }\\ \mathrm{complex\ fraction\ by\ its}\\ \mathrm{LCD\ } \ x( x+h). \end{array}\\ & \\ =\dfrac{\dfrac{-2}{x+h} \cdot x( x+h) +\dfrac{2}{x} \cdot x( x+h)}{h\cdot x( x+h)} & \begin{array}{l} \mathrm{Apply\ the\ distributive\ }\\ \mathrm{property.} \end{array}\\ & \\ =\dfrac{\dfrac{-2x( x+h)}{x+h} +\dfrac{2x( x+h)}{x}}{xh( x+h)} & \mathrm{Multiply.}\\ & \\ =\dfrac{-2x+2( x+h)}{xh( x+h)} & \mathrm{Cancel\ common \space factors.}\\ & \\ =\dfrac{-2x+2x+2h}{xh( x+h)} & \begin{array}{l} \mathrm{Apply\ the\ distributive}\\ \mathrm{property.} \end{array}\\ & \\ =\dfrac{2h}{xh( x+h)} & \mathrm{Combine\ like\ terms.}\\ & \\ =\dfrac{2}{x( x+h)} & \mathrm{Cancel\ common \space factors.} \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.