College Algebra (11th Edition)

Published by Pearson
ISBN 10: 0321671791
ISBN 13: 978-0-32167-179-0

Chapter R - Section R.5 - Rational Expressions - R.5 Exercises - Page 48: 59

Answer

$\dfrac{x(2x-9)}{(x+4)(x-3)(x-4)}$

Work Step by Step

The factored form of the given expression, $ \dfrac{3x}{x^2+x-12}-\dfrac{x}{x^2-16} ,$ is \begin{array}{l}\require{cancel} \dfrac{3x}{(x+4)(x-3)}-\dfrac{x}{(x+4)(x-4)} .\end{array} Using the $LCD= (x+4)(x-3)(x-4) ,$ the expression, $ \dfrac{3x}{(x+4)(x-3)}-\dfrac{x}{(x+4)(x-4)} ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{(x-4)(3x)-(x-3)(x)}{(x+4)(x-3)(x-4)} \\\\= \dfrac{3x^2-12x-x^2+3x}{(x+4)(x-3)(x-4)} \\\\= \dfrac{2x^2-9x}{(x+4)(x-3)(x-4)} \\\\= \dfrac{x(2x-9)}{(x+4)(x-3)(x-4)} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.