Answer
$\text{The given complex fraction simplifies to }\dfrac{x + 1}{x - 1}$.
Work Step by Step
$\displaystyle \begin{array}{ l l }
=\dfrac{x\left( 1+\dfrac{1}{x}\right)}{x\left( 1-\dfrac{1}{x}\right)} & \begin{array}{{>{\displaystyle}l}}
\mathrm{Multiply\ the\ numerator\ and\ denominator\ }\\
\mathrm{of\ the\ complex\ fraction\ by} \ x \text{ (the LCD of all the fractions)}.
\end{array}\\
& \\
=\dfrac{x+x\left(\dfrac{1}{x}\right)}{x-x\left(\dfrac{1}{x}\right)} & \mathrm{Apply\ the\ distributive\ property.*}\\
& \\
=\dfrac{x+\dfrac{x}{x}}{x-\dfrac{x}{x}} & \mathrm{Multiply} \ x\ \mathrm{by} \ \dfrac{1}{x}\\
& \\
=\dfrac{x+1}{x-1} & \mathrm{Apply\ the\ rule} \ \dfrac{a}{a} =1
\end{array}$