Answer
$\sqrt[3]{2}$
Work Step by Step
Factor each radicand so that one of the factors is a perfect cube to obtain:
$=\sqrt[3]{27(2)} -\sqrt[3]{8(2)}
\\=\sqrt[3]{3^3(2)}-\sqrt[3]{2^3(2)}$
Simplify each radical to obtain:
$=3\sqrt[3]{2} - 2\sqrt[3]{2}$
Combine like radicals to obtain:
$=(3-2)\sqrt[3]{2}
\\=1\cdot \sqrt[3]{2}
\\=\sqrt[3]{2}$