Answer
$\lim\limits_{t\to4}\sqrt{t+2}=\sqrt{6}.$
Work Step by Step
Using both Theorem $1.4: \lim\limits_{t\to c}\sqrt[n]{t}=\sqrt[n]{c}$ and Theorem $1.5: \lim\limits_{t\to c}(f(g(t)))=f(\lim\limits_{t\to c}g(t)).$
$\lim\limits_{t\to4}\sqrt{t+2}=\sqrt{4+2}=\sqrt{6}.$