Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.1 Limits, Rates of Change, and Tangent Lines - Exercises - Page 45: 11

Answer

12

Work Step by Step

Average rate of change=$\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x}$ Instantaneous rate of change=$\lim\limits_{\Delta x \to 0}$(average rate of change) $=\lim\limits_{\Delta x \to 0}\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x}=\lim\limits_{\Delta x \to 0}\frac{f(2+\Delta x)-f(2)}{\Delta x}$ $=\lim\limits_{\Delta x \to 0}\frac{[3(2+\Delta x)^{2}-5]-[3(2)^{2}-5]}{\Delta x}=\lim\limits_{\Delta x \to 0}\frac{12+3(\Delta x)^{2}+12\Delta x-5-12+5}{\Delta x}$ $=\lim\limits_{\Delta x \to 0}3\Delta x+12=12$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.