Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.1 Limits, Rates of Change, and Tangent Lines - Exercises - Page 45: 6

Answer

The instantaneous velocity at t = 1 second is 5.2 m/s

Work Step by Step

time interval [1,1.01] $\frac{Δh}{Δt}$ = $\frac{[(15\times1.01)-(4.9\times{1.01^{2}})]-[(15\times1)-(4.9\times{1^{2}})]}{1.01-1}$ = $5.151$ time interval [1,1.001] $\frac{Δh}{Δt}$ = $\frac{[(15\times1.001)-(4.9\times{1.001^{2}})]-[(15\times1)-(4.9\times{1^{2}})]}{1.001-1}$ = $5.1951$ time interval [1,1.0001] $\frac{Δh}{Δt}$ = $\frac{[(15\times1.0001)-(4.9\times{1.0001^{2}})]-[(15\times1)-(4.9\times{1^{2}})]}{1.001-1}$ = $5.1995$ time interval [0.99,1] $\frac{Δh}{Δt}$ = $\frac{[(15\times1)-(4.9\times{1^{2}})]-[(15\times0.99)-(4.9\times{0.99^{2}})]}{1-0.99}$ = $5.249$ time interval [0.999,1] $\frac{Δh}{Δt}$ = $\frac{[(15\times1)-(4.9\times{1^{2}})]-[(15\times0.999)-(4.9\times{0.999^{2}})]}{1-0.999}$ = $5.2049$ time interval [0.9999,1] $\frac{Δh}{Δt}$ = $\frac{[(15\times1)-(4.9\times{1^{2}})]-[(15\times0.9999)-(4.9\times{0.9999^{2}})]}{1-0.9999}$ = $5.2005$ The instantaneous velocity at t = 1 second is 5.2 m/s
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.