Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.1 Limits, Rates of Change, and Tangent Lines - Exercises - Page 45: 21

Answer

a) seconds/meter b) L = 3 m c) The instantaneous rate of change at L = 3 m is approximately 0.4330 s/m

Work Step by Step

a) $\frac{ΔT}{ΔL}$ = $\frac{seconds}{meter}$ = seconds/meter b) L = 3 m c) time interval [3, 3.01] $\frac{ΔT}{ΔL}$ = $\frac{\frac{3\sqrt {3.01}}{2}-\frac{3\sqrt {3}}{2}}{3.01-3}$ = $0.4327$ time interval [3, 3.001] $\frac{ΔT}{ΔL}$ = $\frac{\frac{3\sqrt {3.001}}{2}-\frac{3\sqrt {3}}{2}}{3.001-3}$ = $0.4330$ time interval [3, 3.0001] $\frac{ΔT}{ΔL}$ = $\frac{\frac{3\sqrt {3.0001}}{2}-\frac{3\sqrt {3}}{2}}{3.0001-3}$ = $0.4330$ time interval [2.99, 3] $\frac{ΔT}{ΔL}$ = $\frac{\frac{3\sqrt {3}}{2}-\frac{3\sqrt {2.99}}{2}}{3-2.99}$ = $0.4334$ time interval [2.999, 3] $\frac{ΔT}{ΔL}$ = $\frac{\frac{3\sqrt {3}}{2}-\frac{3\sqrt {2.999}}{2}}{3-2.999}$ = $0.4330$ time interval [2.9999, 3] $\frac{ΔT}{ΔL}$ = $\frac{\frac{3\sqrt {3}}{2}-\frac{3\sqrt {2.9999}}{2}}{3-2.9999}$ = $0.4330$ The instantaneous rate of change at L = 3 m is approximately 0.4330 s/m
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.