Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.1 Limits, Rates of Change, and Tangent Lines - Exercises - Page 45: 8

Answer

time interval [1,4] = $22$ The rate of change at t = 1 is approximately $4$

Work Step by Step

time interval [1,4] $\frac{ΔS}{Δt}$ = $\frac{s(4)-s(1)}{4-1}$ = $\frac{(4^{3}+4)-(1^{3}+1)}{4-1}$ = $22$ time interval [1,1.01] $\frac{ΔS}{Δt}$ = $\frac{s(1.01)-s(1)}{1.01-1}$ = $\frac{(1.01^{3}+1.01)-(1^{3}+1)}{1.01-1}$ = $4.0301$ time interval [1,1.001] $\frac{ΔS}{Δt}$ = $\frac{s(1.001)-s(1)}{1.001-1}$ = $\frac{(1.001^{3}+1.001)-(1^{3}+1)}{1.001-1}$ = $4.0030$ time interval [1,1.0001] $\frac{ΔS}{Δt}$ = $\frac{s(1.0001)-s(1)}{1.0001-1}$ = $\frac{(1.0001^{3}+1.0001)-(1^{3}+1)}{1.0001-1}$ = $4.0003$ time interval [0.99,1] $\frac{ΔS}{Δt}$ = $\frac{s(1)-s(0.99)}{1-0.99}$ = $\frac{(1^{3}+1)-(0.99^{3}+0.99)}{1-0.99}$ = $3.9701$ time interval [0.999,1] $\frac{ΔS}{Δt}$ = $\frac{s(1)-s(0.999)}{1-0.999}$ = $\frac{(1^{3}+1)-(0.999^{3}+0.999)}{1-0.999}$ = $3.9970$ time interval [0.9999,1] $\frac{ΔS}{Δt}$ = $\frac{s(1)-s(0.9999)}{1-0.9999}$ = $\frac{(1^{3}+1)-(0.9999^{3}+0.9999)}{1-0.999}$ = $3.9997$ The rate of change at t = 1 is approximately $4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.