Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.1 Limits, Rates of Change, and Tangent Lines - Exercises - Page 45: 7

Answer

a) $dollars/year$ b) Find the average rate of change over [0, 0.5] = $7.8461$ [0, 1] = $8$ c) The rate of change at t = 0.5 is approximately $8/yr

Work Step by Step

a) $\frac{Δf}{Δt}$ = $\frac{dollars}{year}$ = $dollars/year$ b) [0, 0.5] $\frac{Δf}{Δt}$ = $\frac{100(1.08)^{0.5}-100(1.08)^{0}}{0.5-0}$ = $7.8461$ [0, 1] $\frac{Δf}{Δt}$ = $\frac{100(1.08)^{1}-100(1.08)^{0}}{1-0}$ = $8$ c) time interval [0.5, 0.51] $\frac{Δf}{Δt}$ = $\frac{100(1.08)^{0.51}-100(1.08)^{0.5}}{0.51-0.5}$ = $8.0011$ time interval [0.5, 0.501] $\frac{Δf}{Δt}$ = $\frac{100(1.08)^{0.501}-100(1.08)^{0.5}}{0.501-0.5}$ = $7.9983$ time interval [0.5, 0.5001] $\frac{Δf}{Δt}$ = $\frac{100(1.08)^{0.5001}-100(1.08)^{0.5}}{0.5001-0.5}$ = $7.9981$ time interval [0.49, 0.5] $\frac{Δf}{Δt}$ = $\frac{100(1.08)^{0.5}-100(1.08)^{0.49}}{0.5-0.49}$ = $7.9949$ time interval [0.499, 0.5] $\frac{Δf}{Δt}$ = $\frac{100(1.08)^{0.5}-100(1.08)^{0.499}}{0.5-0.499}$ = $7.9977$ time interval [0.4999, 0.5] $\frac{Δf}{Δt}$ = $\frac{100(1.08)^{0.5}-100(1.08)^{0.4999}}{0.5-0.4999}$ = $7.998$ The rate of change at t = 0.5 is approximately $8/yr
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.