Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.1 Definition of the Derivative - Exercises - Page 102: 2

Answer

The slope of the secant line=$\frac{f(2+h)-f(2)}{(2+h)-2}=\frac{[2(2+h)^{2}-3(2+h)-5]-[2(2)^{2}-3(2)-5]}{h}$ $=\frac{[2\times2^{2}+2\times h^{2}+2\times4h-6-3h-5]-(-3)}{h}=\frac{2h^{2}+5h}{h}=2h+5$ (a) 7 (b) 5

Work Step by Step

The slope of the secant line=$\frac{f(2+h)-f(2)}{(2+h)-2}=\frac{[2(2+h)^{2}-3(2+h)-5]-[2(2)^{2}-3(2)-5]}{h}$ $=\frac{[2\times2^{2}+2\times h^{2}+2\times4h-6-3h-5]-(-3)}{h}=\frac{2h^{2}+5h}{h}=2h+5$ (a) Knowing that $h=3-2=1$, we have the slope of the given secant line=$2h+5=2\times1+5=7$ (b) The slope of the tangent line at x=2 is given by $m=\lim\limits_{h \to 0}\frac{f(2+h)-f(2)}{h}$ We found $\frac{f(2+h)-f(2)}{h}$ to be equal to 2h+5. Therefore, $m=\lim\limits_{h \to 0}2h+5=5$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.