Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.1 Definition of the Derivative - Exercises - Page 102: 8

Answer

$f’(2) = -\frac{1}{4} $

Work Step by Step

$f(x) = \frac{1}{x} $ $f’(2) = \lim\limits_{h \to 0} \frac {f(2+h)-f(2)}{h} $ $f’(2) = \lim\limits_{h \to 0} \frac{\frac{1}{2+h}-\frac{1}{2}}{h} $ $f’(2) = \lim\limits_{h \to 0} \frac{\frac{2}{4+2h}-\frac{2+h}{4+2h}}{h} $ $f’(2) = \lim\limits_{h \to 0} \frac {\frac {-h}{4+2h}}{h} $ $f’(2) = \lim\limits_{h \to 0} (\frac{-h}{4+2h})(\frac{1}{h})$ $f’(2) = \lim\limits_{h \to 0} \frac {-1}{4+2h} $ $f’(2) = -\frac{1}{4} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.