Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.4 Exercises - Page 693: 17

Answer

$=\frac{4 \pi}{3}$

Work Step by Step

Area enclosed by one loop is $\int_{-\pi/6}^{-\pi/6}\frac{r^{2}}{2}d \theta=\int_{-\pi/6}^{-\pi/6}\frac{(4cos(3\theta))^{2}}{2}d \theta$ $=\int_{-\pi/6}^{-\pi/6}8cos^{2}(3\theta)d \theta$ $=8\int_{-\pi/6}^{-\pi/6}(\frac{(1+cos(6\theta))}{2})d \theta$ $=\frac{4 \pi}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.