Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.4 Exercises - Page 693: 46

Answer

$$L=\frac{\sqrt{1+(\ln 5)^{2}}}{\ln 5}\left(5^{2 \pi}-1\right)$$

Work Step by Step

Given $$ r=5^{\theta}, \quad 0 \leqslant \theta \leqslant 2 \pi $$ The length is given by \begin{align*} L&=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{ d \theta}\right)^{2}} d \theta\\ &=\int_{0}^{2 \pi} \sqrt{\left(5^{\theta}\right)^{2}+\left(5^{\theta} \ln 5\right)^{2}} d \theta\\ &=\int_{0}^{2 \pi} \sqrt{5^{2 \theta}\left[1+(\ln 5)^{2}\right]} d \theta\\ &=\sqrt{1+(\ln 5)^{2}} \int_{0}^{2 \pi} 5^{\theta} d \theta\\ &=\sqrt{1+(\ln 5)^{2}} \frac{5^{\theta}}{\ln 5}\bigg|_{0}^{2 \pi}\\ &=\sqrt{1+(\ln 5)^{2}}\left(\frac{5^{2 \pi}}{\ln 5}-\frac{1}{\ln 5}\right)\\ &=\frac{\sqrt{1+(\ln 5)^{2}}}{\ln 5}\left(5^{2 \pi}-1\right) \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.