Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.4 Exercises - Page 693: 45

Answer

$2 \pi$

Work Step by Step

Given $$ r=2 \cos \theta, \quad 0 \leqslant \theta \leqslant \pi $$ The length is given by \begin{align*} L&=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{ d \theta}\right)^{2}} d \theta\\ &=\int_{0}^{\pi} \sqrt{(2 \cos \theta)^{2}+(-2 \sin \theta)^{2}} d \theta\\ &= \int_{0}^{\pi} \sqrt{4\left(\cos ^{2} \theta+\sin ^{2} \theta\right)} d \theta\\ &=\int_{0}^{\pi} \sqrt{4} d \theta=[2 \theta]_{0}^{\pi}\\ &=2 \pi \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.