Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.4 Exercises - Page 693: 48

Answer

$L=16$

Work Step by Step

Given $$ r=2(1+\cos \theta) $$ The length is given by \begin{align*} L&=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{ d \theta}\right)^{2}} d \theta\\ &= \int_{0}^{2 \pi} \sqrt{[2(1+\cos \theta)]^{2}+(-2 \sin \theta)^{2}} d \theta\\ &=\int_{0}^{2 \pi} \sqrt{4+8 \cos \theta+4 \cos ^{2} \theta+4 \sin ^{2} \theta} d \theta\\ &=\int_{0}^{2 \pi} \sqrt{8+8 \cos \theta} d \theta\\ &=\sqrt{8} \int_{0}^{2 \pi} \sqrt{1+\cos \theta} d \theta\\ &=\sqrt{8} \int_{0}^{2 \pi} \sqrt{2 \cos ^{2} \frac{\theta}{2}} d \theta\\ &=4\int_{0}^{2 \pi}\left|\cos \frac{\theta}{2}\right| d \theta\\ &=8\int_{0}^{\pi} \cos \frac{\theta}{2} d \theta\\ &=16 \sin \frac{\theta}{2}\bigg|_{0}^{\pi}\\ &=16 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.