Answer
$=2+\frac{\pi}{4}$
Work Step by Step
$r_{1}=1-sin\theta$ and $r_{2}=1$
$r_{1}^{2}-r_{2}^{2}=(1-sin\theta)^{2}-1=\frac{1}{2}-\frac{1}{2}cos(2\theta)-2sin\theta$
$A=2.\frac{1}{2}\int_{\pi}^{2\pi}(\frac{1}{2}-\frac{1}{2}cos(2\theta)-2sin\theta)d \theta$
$=\frac{1}{2}[\frac{1}{2}\theta-\frac{1}{2}.\frac{1}{2}sin(2\theta)+2cos\theta]_{\pi}^{2\pi}$
$=2+\frac{\pi}{4}$