Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.2 - Limit of a Function and Limit Laws - Exercises 2.2 - Page 57: 57

Answer

$2$

Work Step by Step

Consider $f(x)=x^2;x=1$ and $f(x+h)=(x+h)^2=x^2+2xh+h^2$ Now, we have $\lim\limits_{h\to0}\dfrac{f(x+h)-f(x)}{h}=\lim\limits_{h\to0}\dfrac{(x^2+2xh+h^2)-(x^2)}{h}=\lim\limits_{h\to0}\dfrac{2xh+h^2}{h} $ Thus, $\lim_{h\to0}\dfrac{f(x+h)-f(x)}{h}=\lim\limits_{h\to0}(2x+h)$ Plug $x=1$ , we get $\lim\limits_{h\to0}\dfrac{f(x+h)-f(x)}{h}=\lim\limits_{h\to0}(2+h)=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.