Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.2 - Limit of a Function and Limit Laws - Exercises 2.2 - Page 57: 58

Answer

$-4$

Work Step by Step

Consider $f(x)=x^2; x=-2$ and $f(x+h)=(x+h)^2=x^2+2xh+h^2$ Therefore, $\lim_{h\to0}\dfrac{f(x+h)-f(x)}{h}=\lim\limits_{h\to0}\dfrac{(x^2+2xh+h^2)-(x^2)}{h}=\lim\limits_{h\to0}\dfrac{(2x)h+h^2}{h}=\lim\limits_{h\to0}(2x+h)$ Plug $x=-2$, we get $\lim_{h\to 0}\dfrac{f(x+h)-f(x)}{h}=\lim\limits_{h\to 0}(-4+h)=-4$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.