Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.2 - Limit of a Function and Limit Laws - Exercises 2.2 - Page 57: 60

Answer

$-\dfrac{1}{4}$

Work Step by Step

Here, we have $f(x)=\frac{1}{x};x=-2$ and $f(x+h)=\dfrac{1}{x+h}$ Now, $\lim\limits_{h\to0}\dfrac{f(x+h)-f(x)}{h}=\lim\limits_{h\to0}\dfrac{(\dfrac{1}{x+h})-(\dfrac{1}{x})}{h}=\lim\limits_{h\to0}\dfrac{-1}{x(x+h)}$ Plug $x=-2$, we get $\lim\limits_{h\to0}\dfrac{-1}{x(x+h)}=\dfrac{-1}{(-2)(-2+0)}$ or, $\dfrac{-1}{(-2)(-2)}=-\dfrac{1}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.