Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 1 - Graphs - 2.1 Functions - 2.1 Assess Your Understanding - Page 58: 74

Answer

a. $\sqrt {x-1} +\sqrt {4-x} $ b. $\sqrt {x-1} -\sqrt {4-x} $ c. $\sqrt {\sqrt {4-x}-1}$ d. $\sqrt {\frac{x-1}{4-x}}$ e. $\sqrt 2 +\sqrt 1$ f. $\sqrt 3$ g. $ \sqrt {\sqrt 2-1}$ h. $0$

Work Step by Step

$f(x)=\sqrt {x-1}$ $g(x)=\sqrt {4-x}$ a. $(f+g)(x)$ $= \sqrt {x-1} +\sqrt {4-x} $ b. $(f-g)(x)$ $= \sqrt {x-1} -\sqrt {4-x} $ c. $(f \cdot g)(x)$ $= \sqrt {\sqrt {4-x}-1}$ d. $(\frac{f}{g})(x)$ $= \frac{\sqrt {x-1}}{\sqrt {4-x}}$ $=\sqrt {\frac{x-1}{4-x}}$ e. $(f+g)(3)$ $= \sqrt {x-1} +\sqrt {4-x} $ $=\sqrt {3-1} +\sqrt {4-3}$ $=\sqrt 2 +\sqrt 1$ f. $(f-g)(4)$ $= \sqrt {x-1} -\sqrt {4-x} $ $=\sqrt {4-1} -\sqrt {4-4}$ $=\sqrt 3$ g. $(f \cdot g)(2)$ $= \sqrt {\sqrt {4-2}-1}$ $= \sqrt {\sqrt 2-1}$ h. $(\frac{f}{g})(1)$ $= \frac{\sqrt {x-1}}{\sqrt {4-x}}$ $=\sqrt {\frac{1-1}{4-1}}$ $=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.