Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 1 - Graphs - 2.1 Functions - 2.1 Assess Your Understanding - Page 58: 89

Answer

$\dfrac{1}{\sqrt {x+h-2}+\sqrt {x-2}}$

Work Step by Step

Step $1$. Given $f(x)=\sqrt {x-2}$, we have $f(x+h)=\sqrt {x+h-2}$ Step $2$. $f(x+h)-f(x)=\sqrt {x+h-2}-\sqrt {x-2}$ Step $3$. (Use rationalizing the numerator as suggested.) $\begin{align*} \dfrac{f(x+h)-f(x)}{h}&=\dfrac{\sqrt {x+h-2}-\sqrt {x-2}}{h}\\ &=\dfrac{\sqrt {x+h-2}-\sqrt {x-2}}{h}\cdot\dfrac{\sqrt {x+h-2}+\sqrt {x-2}}{\sqrt {x+h-2}+\sqrt {x-2}}\\ &=\dfrac{x+h-2-x+2}{h(\sqrt {x+h-2}+\sqrt {x-2})}\\ &=\dfrac{h}{h(\sqrt {x+h-2}+\sqrt {x-2})}\\ &=\dfrac{1}{\sqrt {x+h-2}+\sqrt {x-2}} \end{align*}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.