Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 1 - Graphs - 2.1 Functions - 2.1 Assess Your Understanding - Page 58: 85

Answer

The difference quotient of $f\left( x \right)=\frac{1}{{{x}^{2}}}$is$-\dfrac{2x+h}{{{x}^{2}}{{\left( x+h \right)}^{2}}}$.

Work Step by Step

The difference quotient of $f$ at $x$ is given by$\frac{f\left( x+h \right)-f\left( x \right)}{h},\,\,h\ne 0$. $f\left( x+h \right)=\frac{1}{{{\left( x+h \right)}^{2}}}$ and$f\left( x \right)=\frac{1}{{{x}^{2}}}$, Plug in these values, $\frac{f\left( x+h \right)-f\left( x \right)}{h}=\frac{\frac{1}{{{\left( x+h \right)}^{2}}}-\frac{1}{{{x}^{2}}}}{h}$ Subtract, $=\frac{\frac{{{x}^{2}}-{{\left( x+h \right)}^{2}}}{{{x}^{2}}{{\left( x+h \right)}^{2}}}}{h}$ $=\frac{\frac{{{x}^{2}}-\left( {{x}^{2}}+2xh+{{h}^{2}} \right)}{{{x}^{2}}{{\left( x+h \right)}^{2}}}}{h}$ Divide and distribute, $=\frac{{{x}^{2}}-{{x}^{2}}-2xh-{{h}^{2}}}{h{{x}^{2}}{{\left( x+h \right)}^{2}}}$ Simplify, $=\frac{-2xh-{{h}^{2}}}{h{{x}^{2}}{{\left( x+h \right)}^{2}}}$ Factor out $h$ from the numerator, $=\frac{h\left( -2x-h \right)}{h{{x}^{2}}{{\left( x+h \right)}^{2}}}$ Dividing out the factor$h$, $=-\frac{2x+h}{{{x}^{2}}{{\left( x+h \right)}^{2}}}$ Hence, the difference quotient of $f\left( x \right)=\frac{1}{{{x}^{2}}}$ is$-\frac{2x+h}{{{x}^{2}}{{\left( x+h \right)}^{2}}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.