Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 1 - Graphs - 2.1 Functions - 2.1 Assess Your Understanding - Page 58: 75

Answer

a. $\frac{6x+3}{3x-2}$ b. $\frac{-2x+3}{3x-2}$ c. $\frac{17x-6}{6x+4}$ d. $\frac{2x+3}{4x}$ e. $3$ f. $-\frac{1}{2}$ g. $1\frac{3}{4}$ h. $1\frac{1}{4}$

Work Step by Step

$f(x)=\frac{2x+3}{3x-2}$ $g(x)=\frac{4x}{3x-2}$ a. $(f+g)(x)$ $= \frac{2x+3}{3x-2} + \frac{4x}{3x-2} $ $= \frac{6x+3}{3x-2}$ b. $(f-g)(x)$ $= \frac{2x+3}{3x-2} - \frac{4x}{3x-2} $ $= \frac{-2x+3}{3x-2}$ c. $(f \cdot g)(x)$ $= \frac{2(\frac{4x}{3x-2})+3}{3(\frac{4x}{3x-2})-2}$ $= \frac{\frac{8x}{3x-2}+3}{\frac{12x}{3x-2}-2}$ $=\frac{\frac{17x-6}{3x-2}}{\frac{6x+4}{3x-2}}$ $=\frac{17x-6}{6x+4}$ d. $(\frac{f}{g})(x)$ $= \frac{\frac{2x+3}{3x-2}}{\frac{4x}{3x-2}}$ $=\frac{2x+3}{4x}$ e. $(f+g)(3)$ $= \frac{2x+3}{3x-2} + \frac{4x}{3x-2} $ $= \frac{6x+3}{3x-2}$ $= \frac{6(3)+3}{3(3)-2}$ $= \frac{21}{7}$ $=3$ f. $(f-g)(4)$ $= \frac{2x+3}{3x-2} - \frac{4x}{3x-2} $ $= \frac{-2x+3}{3x-2}$ $= \frac{-2(4)+3}{3(4)-2}$ $= \frac{-5}{10}$ $=-\frac{1}{2}$ g. $(f \cdot g)(2)$ $= \frac{2(\frac{4x}{3x-2})+3}{3(\frac{4x}{3x-2})-2}$ $= \frac{\frac{8x}{3x-2}+3}{\frac{12x}{3x-2}-2}$ $=\frac{\frac{17x-6}{3x-2}}{\frac{6x+4}{3x-2}}$ $=\frac{17x-6}{6x+4}$ $=\frac{17(2)-6}{6(2)+4}$ $=\frac{28}{16}$ $=1\frac{3}{4}$ h. $(\frac{f}{g})(1)$ $= \frac{\frac{2x+3}{3x-2}}{\frac{4x}{3x-2}}$ $=\frac{2x+3}{4x}$ $=\frac{2(1)+3}{4(1)}$ $=\frac{5}{4}$ $=1\frac{1}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.