Answer
$(\sqrt[3] {3^2}+\sqrt[3] 3 \sqrt[3] 5+\sqrt[3] {5^2})$
$-\frac{\sqrt[3] {3^2}+\sqrt[3] 3 \sqrt[3] 5+\sqrt[3] {5^2}}{2}$
Work Step by Step
The number should be $(\sqrt[3] {3^2}+\sqrt[3] 3 \sqrt[3] 5+\sqrt[3] {5^2})$.
Multiply $\frac{\sqrt[3] {3^2}+\sqrt[3] 3 \sqrt[3] 5+\sqrt[3] {5^2}}{\sqrt[3] {3^2}+\sqrt[3] 3 \sqrt[3] 5+\sqrt[3] {5^2}}$ to the expression, we have:
$\frac{1}{\sqrt[3] 3-\sqrt[3] 5}\cdot \frac{\sqrt[3] {3^2}+\sqrt[3] 3 \sqrt[3] 5+\sqrt[3] {5^2}}{\sqrt[3] {3^2}+\sqrt[3] 3 \sqrt[3] 5+\sqrt[3] {5^2}}=\frac{\sqrt[3] {3^2}+\sqrt[3] 3 \sqrt[3] 5+\sqrt[3] {5^2}}{3-5}=-\frac{\sqrt[3] {3^2}+\sqrt[3] 3 \sqrt[3] 5+\sqrt[3] {5^2}}{2}$