Answer
$\sin A \approx 0.385 \approx 0.400 $
$\\cos A \approx 0.923 \approx 0.900 $
$\sin B \approx 0.923 \approx 0.900 $
$\cos B \approx 0.385 \approx 0.400 $
Work Step by Step
Steps to Answer-
We will use given data about triangle ABC & Pythagoras Theorem to solve for 'a'-
We know that -
$c^{2} =a^{2} + b^{2}$ ( Pythagoras Theorem)
Therefore -
$a^{2} =c^{2} - b^{2}$
$a^{2} = (9.62)^{2} - (8.88)^{2}$
$a^{2} = 92.5444 - 78.8544$
$a^{2} = 13.69$
therefore $ a = \sqrt (13.69)$
a = 3.7
Now we can write the required T-functions of A and B using $a=3.7$ , b = 8.88 and c = 9.62
$\sin A = \frac{a}{c} = \frac{3.7}{9.62}$ = 0.38461538 $ \approx 0.385 \approx 0.400 $
$\\cos A = \frac{b}{c} = \frac{8.88}{9.62}$ = 0.92307692 $ \approx 0.923 \approx 0.900 $
$\sin B = \frac{b}{c} = \frac{8.88}{9.62}$ = 0.92307692 $ \approx 0.923 \approx 0.900 $
$\cos B = \frac{a}{c} = \frac{3.7}{9.62}$ = 0.38461538 $ \approx 0.385 \approx 0.400 $