Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 2 - Section 2.1 - Definition II: Right Triangle Trigonometry - 2.1 Problem Set - Page 63: 65

Answer

$\sin A \approx 0.385 \approx 0.400 $ $\\cos A \approx 0.923 \approx 0.900 $ $\sin B \approx 0.923 \approx 0.900 $ $\cos B \approx 0.385 \approx 0.400 $

Work Step by Step

Steps to Answer- We will use given data about triangle ABC & Pythagoras Theorem to solve for 'a'- We know that - $c^{2} =a^{2} + b^{2}$ ( Pythagoras Theorem) Therefore - $a^{2} =c^{2} - b^{2}$ $a^{2} = (9.62)^{2} - (8.88)^{2}$ $a^{2} = 92.5444 - 78.8544$ $a^{2} = 13.69$ therefore $ a = \sqrt (13.69)$ a = 3.7 Now we can write the required T-functions of A and B using $a=3.7$ , b = 8.88 and c = 9.62 $\sin A = \frac{a}{c} = \frac{3.7}{9.62}$ = 0.38461538 $ \approx 0.385 \approx 0.400 $ $\\cos A = \frac{b}{c} = \frac{8.88}{9.62}$ = 0.92307692 $ \approx 0.923 \approx 0.900 $ $\sin B = \frac{b}{c} = \frac{8.88}{9.62}$ = 0.92307692 $ \approx 0.923 \approx 0.900 $ $\cos B = \frac{a}{c} = \frac{3.7}{9.62}$ = 0.38461538 $ \approx 0.385 \approx 0.400 $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.