Answer
$\sin A = 0.800 $
$\cos A = 0.600$
$\sin B = 0.600$
$\cos B =0.800 $
Work Step by Step
Steps to Answer-
We will use given data about triangle ABC and Pythagoras Theorem to solve for 'c'-
We know that -
$c^{2} =a^{2} + b^{2}$ ( Pythagoras Theorem)
$c^{2} = (11.28)^{2} + (8.46)^{2}$
$c^{2} = 127.2384 +71.5716$
$c^{2} = 198.81$
therefore $ c = \sqrt (198.81)$ = 14.10
Now we can write the required T-functions of A and B using $a=11.28$ , b = 8.46 and c = 14.10
$\sin A = \frac{a}{c} = \frac{11.28}{14.10}$ = $0.800 $
$\cos A = \frac{b}{c} = \frac{8.46}{14.10}$ = $ 0.600$
$\sin B = \frac{b}{c} =\frac{8.46}{14.10}$ = $ 0.600$
$\cos B =\frac{a}{c} = \frac{11.28}{14.10}$ = $0.800 $