Discrete Mathematics and Its Applications, Seventh Edition

Published by McGraw-Hill Education
ISBN 10: 0073383090
ISBN 13: 978-0-07338-309-5

Chapter 1 - Section 1.3 - Propositional Equivalences - Exercises - Page 35: 15

Answer

$(\neg q\wedge(p\rightarrow q))\rightarrow\neg p $ is a tautology.

Work Step by Step

$\left[\begin{array}{ll} p & q\\ \hline & \\ T & T\\ T & F\\ F & T\\ F & F \end{array}\right. \left.\begin{array}{lll} \neg q & p\rightarrow q & \neg q\wedge(p\rightarrow q)\\ \hline & & \\ F & T & F\\ T & F & F\\ F & T & F\\ T & T & T \end{array}\right]\left[\begin{array}{cc} \neg p & (\neg q\wedge(p\rightarrow q))\rightarrow\neg p\\ \hline & \\ F & T\\ F & T\\ T & T\\ T & T \end{array}\right]$ $(\neg q\wedge(p\rightarrow q))\rightarrow\neg p $ has all T values in its column, so it is a tautology.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.