Discrete Mathematics and Its Applications, Seventh Edition

Published by McGraw-Hill Education
ISBN 10: 0073383090
ISBN 13: 978-0-07338-309-5

Chapter 1 - Section 1.3 - Propositional Equivalences - Exercises - Page 35: 29

Answer

$(p→q)∧(q→r)→(p→r)$ is a tautology

Work Step by Step

We have $(p→q)∧(q→r)→(p→r)$ $\rightarrow \neg(\neg p∨q)∧(\neg q∨r)∨(\neg p∨r)$ $\rightarrow \neg (\neg p∨q)∨ \neg (\neg q∨r)∨ (\neg p∨r)$ $\rightarrow \neg p∨(\neg \neg p∧\neg q)∨(\neg \neg q∧\neg r)∨ r$ $\rightarrow ((\neg p∨\neg \neg p)∧(\neg p∨\neg q))∨((\neg \neg q∨r)∧(\neg r∨r))$ $\rightarrow (\top∧(\neg p∨\neg q))∨((\neg \neg q∨r)∧ \top)$ $\rightarrow (\neg p∨\neg q)∨(\neg \neg q∨r)$ $\rightarrow \neg p∨\top∨r$ $\rightarrow \top$ $(p→q)∧(q→r)→(p→r)$ is a tautology.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.