Discrete Mathematics and Its Applications, Seventh Edition

Published by McGraw-Hill Education
ISBN 10: 0073383090
ISBN 13: 978-0-07338-309-5

Chapter 1 - Section 1.3 - Propositional Equivalences - Exercises - Page 35: 27

Answer

See step by step work for answer

Work Step by Step

LOGICAL EQUIVALENCES $$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q).....(1) $$ $$ p \rightarrow q \equiv \neg q \lor q ....(2)$$ Identity laws: $$ p \land T \equiv p$$$$ p \lor F \equiv p$$ Commutative laws: $$ p\lor q\equiv q \lor p$$$$ p\land q\equiv q \land p$$ Negation Laws: $$ p \lor \neg p \equiv T$$$$ p \land \neg p \equiv F$$ Solution: Use Logical equivalence (1): $$ p\leftrightarrow q \equiv (p \land q)\lor (\neg p \land \neg q)$$ Use Distributive Law: $$\equiv [p\lor (\neg p \land \neg q)] \land [q \lor (\neg p \land \neg q)]$$ $$\equiv [(p\lor \neg p) \land (p \lor \neg q)] \land [(q \lor \neg p )\land (q \lor \neg q)]$$ Use Negation Laws: $$\equiv [T \land (p \lor \neg q)] \land [(q \lor \neg p )\land T]$$ Use Identity Law: $$\equiv (p \lor \neg q) \land (q \lor \neg p)$$ Use Commutative Law: $$\equiv (q \lor \neg p) \land (p \lor \neg q) $$$$\equiv (\neg p \lor q) \land (\neg q \lor p ) $$ Use Logical equivalence (2): $$ \equiv (p \rightarrow q) \land (q \rightarrow p)$$ We have thus derived that $p \leftrightarrow q $ is logically equivalent with $ \equiv (p \rightarrow q) \land (q \rightarrow p)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.