Answer
See step by step work for solution.
Work Step by Step
We start with $(p \land q)→r$
Use Logical Equivalence: (p→q)≡(¬p∨q)
$$(p \land q)→r≡¬(p\land q)∨r$$
Use De Morgan's Law:
$$≡(¬p\lor¬q)∨r$$
Use Idempotent Law:
$$≡(¬p\lor ¬q)∨(r∨r)$$
Use Associative and Commutative Law:
$$≡(¬p\lor r)∨(¬q∨r)$$
Use Logical Equivalence:(p→q)≡(¬p∨q)
$$≡(p\rightarrow r)∨(q\rightarrow r)$$
We have thus derived that $(p \land q)→r \equiv (p\rightarrow r)∨(q\rightarrow r).$