Discrete Mathematics and Its Applications, Seventh Edition

Published by McGraw-Hill Education
ISBN 10: 0073383090
ISBN 13: 978-0-07338-309-5

Chapter 1 - Section 1.3 - Propositional Equivalences - Exercises - Page 35: 23

Answer

See step by step work for solution

Work Step by Step

We start with $(p \lor q) \rightarrow r$ Use Logical Equivalence: $ ( p \rightarrow q) \equiv (\neg p \lor q)$ $$(p \lor q) \rightarrow r \equiv \neg (p \lor q) \lor r $$ Use De Morgan;s Law: $$\equiv (\neg p \land \neg q) \lor r $$ Use Distributive Law: $$\equiv (\neg p \lor r) \land (\neg q \lor r) $$ Use Logical Equivalence: $ ( p \rightarrow q) \equiv (\neg p \lor q)$ $$\equiv (p \rightarrow r) \land (q \rightarrow r) $$ Thus we have derived that $(p \lor q) \rightarrow r$ is logically equivalent to $ (p \rightarrow r) \land (q \rightarrow r) $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.