Answer
See step by step answer
Work Step by Step
a) The conditional statement is a tautology because the last column of the following truth table contains only True values.
$\underline{p\quad q \quad p \land q \quad (p\land q)\rightarrow p }$
$T\quad T \quad T \quad\quad\quad T $
$T\quad F \quad F \quad\quad\quad T $
$F\quad T \quad F \quad\quad\quad T $
$T\quad F \quad F \quad\quad\quad T $
b) The conditional statement is a tautology because the last column of the following truth table contains only True values.
$\underline{p\quad q \quad p \lor q \quad p\rightarrow (p \lor q) }$
$T\quad T \quad T \quad\quad\quad T $
$T\quad F \quad T \quad\quad\quad T $
$F\quad T \quad T \quad\quad\quad T $
$T\quad F \quad F \quad\quad\quad T $
c) The conditional statement is a tautology because the last column of the following truth table contains only True values.
$\underline{p\quad q \quad \neg p \quad p \rightarrow q \quad \neg p\rightarrow (p \rightarrow q) }$
$T\quad T \quad F \quad \quad T \quad \quad \quad \quad T $
$T\quad F \quad F \quad \quad F \quad \quad \quad \quad T $
$F\quad T \quad T \quad \quad T \quad \quad \quad \quad T $
$F\quad F \quad T \quad \quad T \quad \quad \quad \quad T $
d) The conditional statement is a tautology because the last column of the following truth table contains only True values.
$\underline{p\quad q \quad p\land q \quad p \rightarrow q \quad (p \land q)\rightarrow (p \rightarrow q) }$
$T\quad T \quad T \quad \quad T \quad\quad \quad \quad \quad T $
$T\quad F \quad F \quad \quad F \quad\quad \quad \quad \quad T $
$F\quad T \quad F \quad \quad T \quad\quad \quad \quad \quad T $
$F\quad F \quad F \quad \quad T \quad\quad \quad \quad \quad T $
e) The conditional statement is a tautology because the last column of the following truth table contains only True values.
$\underline{p\quad q \quad p\rightarrow q \quad \neg (p \rightarrow q) \quad \neg (p \rightarrow q)\rightarrow p }$
$T\quad T \quad T \quad \quad \quad \quad F \quad \quad \quad \quad\quad \quad T $
$T\quad F \quad F \quad \quad \quad \quad T \quad \quad \quad \quad\quad \quad T $
$F\quad T \quad T \quad \quad \quad \quad F \quad \quad \quad \quad\quad \quad T $
$F\quad F \quad T \quad \quad \quad \quad F \quad \quad \quad \quad\quad \quad T $
f) The conditional statement is a tautology because the last column of the following truth table contains only True values.
$\underline{p\quad q \quad p\rightarrow q \quad \neg (p \rightarrow q) \quad \neg q \quad \neg (p \rightarrow q)\rightarrow \neg q }$
$T\quad T \quad T\quad\quad\quad\quad F\quad\quad \quad F \quad\quad\quad T$
$T\quad F \quad F\quad\quad\quad\quad T\quad\quad \quad T \quad\quad\quad T$
$F\quad T \quad T\quad\quad\quad\quad F\quad\quad \quad F \quad\quad\quad T$
$F\quad F \quad T\quad\quad\quad\quad F\quad\quad \quad T \quad\quad\quad T$