Discrete Mathematics and Its Applications, Seventh Edition

Published by McGraw-Hill Education
ISBN 10: 0073383090
ISBN 13: 978-0-07338-309-5

Chapter 1 - Section 1.3 - Propositional Equivalences - Exercises - Page 35: 17

Answer

The statement $\neg(p\leftrightarrow q)$ means "the opposite of p if and only if q". This statement evaluates to true only when $p$ and $q$ have the opposite truth value, so it is only true when $p$ is true and $q$ is false or $p$ is false and $q$ is true. The second proposition, $p\leftrightarrow\neg q$ means "p if and only if not q". This too will evaluate to true only when both $p$ and $q$ are have opposite truth values, as it is saying one if and only if not the other. Since the two propositions have the same truth value for every truth assignment of $p$ and $q$, they are logically equivalent.

Work Step by Step

This question asked us for an explanation, so I included the full explanation in the answer section. Please see above.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.