Algebra 2 Common Core

Published by Prentice Hall
ISBN 10: 0133186024
ISBN 13: 978-0-13318-602-4

Chapter 1 - Expressions, Equations, and Inequalities - 1-6 Absolute Value Equations and Inequalities - Practice and Problem-Solving Exercises - Page 46: 20

Answer

$z=\dfrac{2}{3}$

Work Step by Step

The given equation, $ |2z-3|=4z-1 ,$ is equivalent to \begin{array}{l}\require{cancel} 2z-3=4z-1 \\\\\text{OR}\\\\ 2z-3=-(4z-1) .\end{array} Solving each equation results to \begin{array}{l}\require{cancel} 2z-3=4z-1 \\ 2z-4z=-1+3 \\ -2z=2 \\ \dfrac{-2z}{-2}=\dfrac{2}{-2} \\ z=-1 \\\\\text{OR}\\\\ 2z-3=-(4z-1) \\ 2z-3=-4z+1 \\ 2z+4z=1+3 \\ 6z=4 \\ \dfrac{6z}{6}=\dfrac{4}{6} \\ z=\dfrac{2}{3} .\end{array} Since the right side of the given equation is not a constant, then checking of solution/s is required. Substituting $ z=-1 $ in the original equation results to \begin{array}{l}\require{cancel} |2z-3|=4z-1 \\ |2(-1)-3|=4(-1)-1 \\ |-2-3|=-4-1 \\ |-5|=-5 \\ 5=-5 \text{ (FALSE)} .\end{array} Since the substitution above resulted in a FALSE statement, then $ z=-1 ,$ is not a solution (an extraneous solution). Substituting $ z=\dfrac{2}{3} $ in the original equation results to \begin{array}{l}\require{cancel} |2z-3|=4z-1 \\ \left|2\left(\dfrac{2}{3}\right)-3\right|=4\left(\dfrac{2}{3}\right)-1 \\ \left|\dfrac{4}{3}-3\right|=\dfrac{8}{3}-1 \\ \left|\dfrac{4}{3}-\dfrac{9}{3}\right|=\dfrac{8}{3}-\dfrac{3}{3} \\ \left|-\dfrac{5}{3}\right|=\dfrac{5}{3} \\ \dfrac{5}{3}=\dfrac{5}{3} \text{ (TRUE)} .\end{array} Hence, the solutions $ z=\dfrac{2}{3} .$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.