Algebra 2 Common Core

Published by Prentice Hall
ISBN 10: 0133186024
ISBN 13: 978-0-13318-602-4

Chapter 1 - Expressions, Equations, and Inequalities - 1-6 Absolute Value Equations and Inequalities - Practice and Problem-Solving Exercises - Page 46: 46

Answer

$c=-\dfrac{1}{3}$

Work Step by Step

Using the properties of equality, the given equation, $ \dfrac{1}{2}|3c+5|=6c+4 ,$ is equivalent to \begin{array}{l}\require{cancel} 2\left( \dfrac{1}{2}|3c+5| \right)=(6c+4)2 \\\\ |3c+5|=12c+8 .\end{array} Removing the absolute value sign, the expression above is equivalent to \begin{array}{l}\require{cancel} 3c+5=12c+8 \\\\\text{ OR }\\\\ 3c+5=-(12c+8) .\end{array} Solving each equation results to \begin{array}{l}\require{cancel} 3c+5=12c+8 \\ 3c-12c=8-5 \\ -9c=3 \\ \dfrac{-9c}{-9}=\dfrac{3}{-9} \\ c=-\dfrac{1}{3} \\\\\text{ OR }\\\\ 3c+5=-(12c+8) \\ 3c+5=-12c-8 \\ 3c+12c=-8-5 \\ 15c=-13 \\ \dfrac{15c}{15}=-\dfrac{13}{15} \\ c=-\dfrac{13}{15} .\end{array} Since the right side of the original equation is not a constant, then checking of solutions is required. Substituting $ c=-\dfrac{1}{3} $ in the original equation results to \begin{array}{l}\require{cancel} \dfrac{1}{2}|3c+5|=6c+4 \\\\ \dfrac{1}{2}\left| 3\left( -\dfrac{1}{3} \right)+5 \right|=6\left( -\dfrac{1}{3} \right)+4 \\\\ \dfrac{1}{2}\left| -1+5 \right|=-2+4 \\\\ \dfrac{1}{2}\left| 4 \right|=2 \\\\ \dfrac{1}{2}(4)=2 \\\\ 2=2 \text{ (TRUE)} .\end{array} Substituting $ c=-\dfrac{13}{15} $ in the original equation results to \begin{array}{l}\require{cancel} \dfrac{1}{2}|3c+5|=6c+4 \\\\ \dfrac{1}{2}\left| 3\left( -\dfrac{13}{15} \right)+5 \right|=6\left( -\dfrac{13}{15} \right)+4 \\\\ \dfrac{1}{2}\left| -\dfrac{13}{5}+5 \right|=2\left( -\dfrac{13}{5} \right)+4 \\\\ \dfrac{1}{2}\left| -\dfrac{13}{5}+\dfrac{25}{5} \right|=-\dfrac{26}{5}+4 \\\\ \dfrac{1}{2}\left| \dfrac{12}{5}\right|=-\dfrac{26}{5}+\dfrac{20}{4} \\\\ \dfrac{1}{2}\left( \dfrac{12}{5}\right)=-\dfrac{6}{5} \\\\ \dfrac{6}{5}=-\dfrac{6}{5} \text{ (FALSE)} .\end{array} Since the substitution above ended with a FALSE statement, then $ c=-\dfrac{13}{15} $ is not a solution. Hence, the solution is $ c=-\dfrac{1}{3} .$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.