Algebra 2 Common Core

Published by Prentice Hall
ISBN 10: 0133186024
ISBN 13: 978-0-13318-602-4

Chapter 1 - Expressions, Equations, and Inequalities - 1-6 Absolute Value Equations and Inequalities - Practice and Problem-Solving Exercises - Page 46: 44

Answer

$x=-1\text{ OR }x=-\dfrac{3}{2}$

Work Step by Step

Using the properties of equality, the given equation, $ 4|3x+4|=4x+8 ,$ is equivalent to \begin{array}{l}\require{cancel} \dfrac{4|3x+4|}{4}=\dfrac{4x+8}{4} \\\\ |3x+4|=x+2 .\end{array} Removing the absolute value sign, the expression above is equivalent to \begin{array}{l}\require{cancel} 3x+4=x+2 \\\\\text{ OR }\\\\ 3x+4=-(x+2) .\end{array} Solving each equation results to \begin{array}{l}\require{cancel} 3x+4=x+2 \\ 3x-x=2-4 \\ 2x=-2 \\ \dfrac{2x}{2}=-\dfrac{2}{2} \\ x=-1 \\\\\text{ OR }\\\\ 3x+4=-(x+2) \\ 3x+4=-x-2 \\ 3x+x=-2-4 \\ 4x=-6 \\ \dfrac{4x}{4}=-\dfrac{6}{4} \\ x=-\dfrac{3}{2} .\end{array} Since the right side of the original equation is not a constant, then checking of solutions is required. Substituting $ x=-1 $ in the original equation results to \begin{array}{l}\require{cancel} 4|3x+4|=4x+8 \\ 4|3(-1)+4|=4(-1)+8 \\ 4|-3+4|=-4+8 \\ 4|1|=4 \\ 4(1)=4 \\ 4=4 \text{ (TRUE)} .\end{array} Substituting $ x=-\dfrac{3}{2} $ in the original equation results to \begin{array}{l}\require{cancel} 4|3x+4|=4x+8 \\ 4\left|3\left( -\dfrac{3}{2} \right)+4\right|=4\left( -\dfrac{3}{2} \right)+8 \\ 4\left|-\dfrac{9}{2} +4\right|=2(-3)+8 \\ 4\left|-\dfrac{9}{2} +\dfrac{8}{2}\right|=-6+8 \\ 4\left|-\dfrac{1}{2}\right|=2 \\ 4\left(\dfrac{1}{2}\right)=2 \\ 2=2 \text{ (TRUE)} .\end{array} Hence, the solutions are $ x=-1\text{ OR }x=-\dfrac{3}{2} .$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.