Algebra 2 Common Core

Published by Prentice Hall
ISBN 10: 0133186024
ISBN 13: 978-0-13318-602-4

Chapter 1 - Expressions, Equations, and Inequalities - 1-6 Absolute Value Equations and Inequalities - Practice and Problem-Solving Exercises - Page 46: 23

Answer

$w=-1\text{ OR }w=\dfrac{3}{2}$

Work Step by Step

Using the properties of equality, the given equation, $ 3|4w-1|-5=10 ,$ is equivalent to \begin{array}{l}\require{cancel} 3|4w-1|-5+5=10+5 \\ 3|4w-1|=15 \\ \dfrac{3|4w-1|}{3}=\dfrac{15}{3} \\ |4w-1|=5 .\end{array} Since for any $c\gt0$, $|x|=c$ implies $x=c \text{ or } x=-c,$ the equation above implies \begin{array}{l}\require{cancel} 4w-1=5 \\\\\text{OR}\\\\ 4w-1=-5 .\end{array} Solving each equation results to \begin{array}{l}\require{cancel} 4w-1=5 \\ 4w-1+1=5+1 \\ 4w=6 \\ \dfrac{4w}{4}=\dfrac{6}{4} \\ w=\dfrac{3}{2} \\\\\text{OR}\\\\ 4w-1=-5 \\ 4w-1+1=-5+1 \\ 4w=-4 \\ \dfrac{4w}{4}=-\dfrac{4}{4} \\ w=-1 .\end{array} Hence, $ w=-1\text{ OR }w=\dfrac{3}{2} .$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.