Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.6 First-Order Linear Differential Equations - Problems - Page 59: 11

Answer

$y(x)=\frac{1}{\cos{x}}(\frac{1}{2}\cos{2x}+C)$

Work Step by Step

Given that: $$y' = \sin{x} (y \sec{x} - 2)$$ Rewrite in terms of $\frac{dy}{dx}$ and multiply right side terms: $$\frac{dy}{dx} = y \sin{x} \sec{x} - 2 \sin{x}$$ Put the equation in standard form: $\frac{dy}{dx} + P(x)y = Q(x)$ $$\frac{dy}{dx} + y (- \sin{x} \sec{x}) = - 2 \sin{x}$$ Find integration factor: $I(x) =e^{\int{P(x)} dx}$ $$I(x) = e^{\int{- \sin{x} \sec{x} dx}} = e^{- \int{\tan{x}} dx} = e^{-\ln{|\sec{x}|}} = \frac{1}{\sec{x}}=\cos{x}$$ Multiply both sides by integration factor: $$[\frac{dy}{dx} + y (- \sin{x} \sec{x})] \cdot \cos{x} = [- 2 \sin{x}] \cdot \cos{x}$$ Rewrite left side as $\frac{d}{dx}[I(x)y]$: $$\frac{d}{dx}[(\cos{x})y] = - 2 \sin{x} \cos{x}$$ $$\frac{d}{dx}[(\cos{x})y] = - \sin{2x}$$ Integrate both sides: $$\int{\frac{d}{dx}[(\cos{x})y]} = \int{- \sin{2x}}dx$$ $$(\cos{x})y = \frac{1}{2} \cos{2x} + C$$ Solve for y: $$y=\frac{1}{\cos{x}}\left(\frac{1}{2}\cos{2x}+C\right)$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.