Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.6 First-Order Linear Differential Equations - Problems - Page 59: 9

Answer

$y=\frac{4\left(\cos ^2\left(x\right)-2\ln \left|\cos \left(x\right)\right|\right)+C}{\sec \left(x\right)}$

Work Step by Step

Given that: $y'+y\tan x=8\sin ^3x$ Use an integration factor of: $$\mu (x)=e^{\int P(x)dx}$$ where $P(x)=\tan x$ $$\mu (x)=e^{\int \tan x dx}=e^{\log (\sec (x))}=\sec x$$ Multiply the entire equation by this factor. $$\sec (x)(y'+y\tan x=8\sin ^3x)$$$$y'\sec x+y \tan x \sec x=8\sin^3x \sec x$$ Integrate each side. $$\int y'\sec x+y \tan x \sec x=\int 8\sin^3x \sec x dx$$$$\sec (x)y =\int 8\sin^3x \sec x dx$$ $$\sec (x)y =8(-\ln|\cos x|+\frac{\cos^2x}{2})+C$$ Solve for y $$y=\frac{4\left(\cos ^2\left(x\right)-2\ln \left|\cos \left(x\right)\right|\right)+C}{\sec \left(x\right)}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.