Answer
$y=-x^5\cos{x}+x^4\sin{x}+c_{1}x^4$
Work Step by Step
Given that:
$x^2\frac{dy}{dx}-4xy=x^7\sin{x}$
Integrating factor $I(x)=e^{\int{-4x^{-1}dx}}=e^{-4logx}=x^{-4}$
So, the integrating factor=$x^{-4}$
Thus;
$y.I(x)=\int q(x)I(x)dx+c_{1}$
$yx^{-4}=\int x^{-4}x^5\sin{x}dx+c_{1}$
$y=-x^5\cos{x}+x^4\sin{x}+c_{1}x^4$