Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.6 First-Order Linear Differential Equations - Problems - Page 59: 21

Answer

$y=\frac{5}{4}e^{2x}+\frac{1}{4}e^{2x-1}), x \lt 1$ and $y=\frac{5}{4}e^{2x},x\geq 1$

Work Step by Step

We are given: $y'-2y=f(x)$ where $f(x)=1-x,x \lt 1$ and $f(x)=0,x \geq 1$ Integrating factor: $I(t)=e^{\int -2dx}=e^{-x}$ Multiply both sides by the intergrating factor: $e^xy'+e^xy=\frac{d}{dx}(ye^x)$ Integrate both sides: $\int If(x)dx=\int \frac{1}{4}e^{-2x}(2x-1), x \lt 1$ and $\int If(x)dx=0, x \geq 1$ The general solution is: $y=e^{2x}(c+\frac{1}{4}e^{2x-1}), x \lt 1$ and $y=e^{2x}(c+0),x\geq 1$ Since $y(0)=1$ $1=e^0(c+\frac{1}{4}e^0(0-1)) $ Solve for $c$: $c=\frac{5}{4}$ Hence the particular solution are $y=\frac{5}{4}e^{2x}+\frac{1}{4}e^{2x-1}), x \lt 1$ and $y=\frac{5}{4}e^{2x},x\geq 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.