Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.6 First-Order Linear Differential Equations - Problems - Page 59: 8

Answer

\[y(x)=\frac{C+x^3(3\ln x-1)}{\ln x}\]

Work Step by Step

$y'+\frac{1}{x\ln x}y=9x^2$ ____(1) $\frac{dy}{dx}+\frac{1}{x\ln x}y=9x^2$ ____(2) This is linear differential equation Integrating factor:- $I(x)=e^{\int\frac{1}{x\ln x}dx}=e^{\ln(\ln x)}=\ln x$ Multiply (2) by $I(x)$ $\ln x\frac{dy}{dx}+\frac{1}{x}y=9x^2\ln x$ $\frac{d}{dx}[y\ln x]=9x^2\ln x$ Integrating, $y\ln x=\int 9x^2\ln x\;dx+C$ $C$ is constant of integration $y\ln x=9\left[\ln x.\frac{x^3}{3}-\int\frac{1}{x}.\frac{x^3}{3}dx\right]+C$ $y\ln x=9\left[\ln x.\frac{x^3}{3}-\frac{x^3}{9}\right]+C$ $y\ln x=x^3(3\ln x-1)+C$ $y=\frac{C+x^3(3\ln x-1)}{\ln x}$ Hence general solution of (1) is $y(x)=\frac{C+x^3(3\ln x-1)}{\ln x}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.