Answer
$T=ce^{-kt}+T_0$
Work Step by Step
Newton’s law of cooling:
$\frac{dT}{dt}=k(T_0-T)$
$\frac{dT}{dt}+kT=kT_0$
where $k$ is proportionality constant
and $T_0$ is the environment's temperature
Intergrating factor:
$I=e^{\int kdt}=e^{kt}$
Multiply both sides by the intergrating factor:
$T=I^{-1}(c_1+\int IkT_0)$
C is constant of integration
$T=e^{-kt}(c_1+kT_0\int e^{kt}dt)$
$T=ce^{-kt}+T_0$
The solution is $T=ce^{-kt}+T_0$