Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.6 First-Order Linear Differential Equations - Problems - Page 59: 14

Answer

\[y(x)=\frac{e^{\beta x}}{\alpha+\beta}+Ce^{-\alpha x}\]

Work Step by Step

$y'+\alpha y=e^{\beta x}$ _____(1) Integrating factor \[I(x)=e^{\int\alpha dx}=e^{\alpha x}\] Multiplying (1) by $I(x)$ \[e^{\alpha x}\frac{dy}{dx}+\alpha e^{\alpha x}y=e^{(\alpha+\beta) x}\] \[\frac{d}{dx}(ye^{\alpha x})=e^{(\alpha+\beta) x}\] Integrating, \[ye^{\alpha x}=\int e^{(\alpha+\beta) x}dx+C\] Where $C$ is constant of integration \[ye^{\alpha x}=\frac{e^{(\alpha+\beta) x}}{\alpha+\beta}+C\] \[y(x)=\frac{e^{\beta x}}{\alpha+\beta}+Ce^{-\alpha x}\] Hence general solution is $y(x)=\Large\frac{e^{\beta x}}{\alpha+\beta}+\large Ce^{-\alpha x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.