Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.1 Definition of the Derivative - Exercises - Page 103: 37

Answer

$$-1$$ $$y= -x-1 $$

Work Step by Step

Since $f(x)=\dfrac{1}{x+3} .$ Then \begin{align*} f^{\prime}(-2)&=\lim _{h \rightarrow 0} \frac{f(-2+h)-f(-2)}{h}\\ &=\lim _{h \rightarrow 0} \frac{\frac{1}{-2+h+3}-1}{h}\\ &=\lim _{h \rightarrow 0} \frac{\frac{1}{1+h}-1}{h}\\ &=\lim _{h \rightarrow 0} \frac{-h}{h(1+h)}\\ &=\lim _{h \rightarrow 0} \frac{-1}{1+h}=-1\end{align*} The tangent line at $a=-2$ is $$ y=f^{\prime}(-2)(x+2)+f(-2)=-1(x+2)+1=-x-1 $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.