Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.1 Definition of the Derivative - Exercises - Page 103: 38

Answer

$$\frac{1}{2}$$ $$ y= \frac{1}{2}t+\frac{3}{2} $$

Work Step by Step

Since $f(t)=\dfrac{2}{1-t} .$ Then \begin{align*} f^{\prime}(-1)&=\lim _{h \rightarrow 0} \frac{f(-1+h)-f(-1)}{h}\\ &=\lim _{h \rightarrow 0} \frac{\frac{2}{1+1-h}-1}{h}\\ &=\lim _{h \rightarrow 0} \frac{\frac{2}{2+h}-1}{h}\\ &=\lim _{h \rightarrow 0} \frac{1}{2-h}\\ &=\frac{1}{2}\end{align*} The tangent line at $a=-1$ is $$ y=f^{\prime}(-1)(t+1)+f(-1)=\frac{1}{2}(t+1)+1=\frac{1}{2}t+\frac{3}{2} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.